CATALYSIS HELPS SOCIETY DO MORE WITH LESS

Innovative Process Improves Sustainability, Quality of Life

Catalysis is a powerful technology with vast potential to help address global challenges. It will play a crucial role in efforts to improve energy efficiency, reduce greenhouse gas emissions, feed a growing population, and improve health and living standards. Given its important benefits, support for catalysis should be a priority for governments, industry, and researchers.

WHAT IS CATALYSIS?

In many ways, catalysis makes modern living possible, with valuable contributions in areas such as transportation, energy, food production, and health.

WITHOUT CATALYST

Catalysts are added substances that increase the rate of chemical reactions. Less energy is used per unit of product.

CATALYSIS BENEFITS FOR SOCIETY

Some laundry detergents contain enzymes that let them work in cold water – that's catalysis!

Catalytic converters in cars have dramatically reduced harmful emissions.

Catalysis contributes to greater than 35% of global GDP, estimates show

Human cells contain enzymes that make biochemical reactions happen more than a million times faster

Catalysis is important for the production of chemicals, pharmaceuticals, energy, and agriculture.

have been related to catalysis.

ACTIONS NEEDED TO REALIZE FUTURE GAINS

About 90% of chemical processes already use catalysis for efficient production, but there is enormous potential for further energy savings in the chemical industry.* Advancements are possible in the areas of feedstocks, fuels, and production of some high-volume chemicals. Developing "next generation" catalytic processes will require a dedicated effort over many years.

Expand adoption of best practice technologies

Commit to ongoing investment in research and development

Create a policy framework that supports development, demonstration, and deployment

Encourage collaboration by industry, universities, and government

Energy savings could reach 13 exajoules by 2050 – equivalent to the annual energy consumption of Germany.

GHG emissions could be reduced by 1.1 billion tons of CO2 equivalent – equal to the annual emissions from 200 million vehicles.

Operating costs could be lowered – helping manufacturers to be more competitive.

* International Council of Chemical Associations (ICCA), International Energy Agency (IEA), and Society for Chemical Engineering and Biotechnology (DECHEMA), "Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes," 2013 https://www.americanchemistry.com/Catalysis-Roadmap

TIMELINE OF INNOVATION

10.000 - 4.000 BC

Catalysts used for fermented beer, wine, and bread.

1897

Discovery of nickel catalysts, which led to lower-emitting fuels.

1925

Invention of Fischer-Tropsch process for liquid fuels.

1960s

Invention of exhaust gas catalyst system for automobiles, now the most common catalytic reactor in the world.

1980s

Introduction of Selective Catalytic Reduction technology, now used for mobile applications and emissions control.

1831

First patent for industrial catalysis.

1913

Invention of Haber-Bosch process for modern fertilizer production.

1950

Invention of Ziegler-Natta polymerization, which led to more reliable and affordable packaging and lighter-weight vehicles.

CASE STUDY: MODERN FERTILIZERS

60%

In the 1920s, Europe faced a potential food crisis due to depleted soils.

A new catalyst for ammonia production cut energy used by 60%. The lower-cost fertilizers helped avert the crisis, and the "Haber-Bosch" process became the cornerstone of modern fertilizer making.

Today, about 50% of the world's food production relies on ammonia-based fertilizers.